Source code for src.recommender.metrics

""" The metrics functions are copied from this repository:
https://gist.github.com/bwhite/3726239
"""

import numpy as np


[docs]def evaluate_recommendations(predictions, target, k): """Evaluate the quality of recommendations with NDCG. We compare the predictions set with the target set that should reflect what items are relevant. Args: predictions (list): List of recommended items. \ Ordered by descending score. target (list): List of relevant items. k (int): Only consider the k first items in the set Returns: float: NDCG at k score """ indicator = [1 if item in target else 0 for item in predictions] score = ndcg_at_k(indicator, k) return score
[docs]def dcg_at_k(r, k, method=0): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> dcg_at_k(r, 1) 3.0 >>> dcg_at_k(r, 1, method=1) 3.0 >>> dcg_at_k(r, 2) 5.0 >>> dcg_at_k(r, 2, method=1) 4.2618595071429155 >>> dcg_at_k(r, 10) 9.6051177391888114 >>> dcg_at_k(r, 11) 9.6051177391888114 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0.
[docs]def ndcg_at_k(r, k, method=0): """Score is normalized discounted cumulative gain (ndcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> ndcg_at_k(r, 1) 1.0 >>> r = [2, 1, 2, 0] >>> ndcg_at_k(r, 4) 0.9203032077642922 >>> ndcg_at_k(r, 4, method=1) 0.96519546960144276 >>> ndcg_at_k([0], 1) 0.0 >>> ndcg_at_k([1], 2) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Normalized discounted cumulative gain """ dcg_max = dcg_at_k(sorted(r, reverse=True), k, method) if not dcg_max: return 0. return dcg_at_k(r, k, method) / dcg_max